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appendix b: estimated standard errors for the estimated 
lower bounds  

Rule 8(a) of the Federal Rules of Civil Procedure provides in 

pertinent part that “[a] pleading that states a claim for relief must 

contain: . . . (2) a short and plain statement of the claim showing that 

the pleader is entitled to relief.”1 This rule plays a critical role in the 

adjudication of Rule 12(b)(6) motions to dismiss for failure to state a 

claim: failure to make a “short and plain statement of the claim showing 

that the pleader is entitled to relief” is the basis for dismissal under Rule 

12(b)(6). 

The null hypothesis of interest in this Note is that Twombly/Iqbal 

changed nothing about either judicial or party behavior. Under this 

hypothesis, both the negatively affected share and my lower bound on it 

will be zero, by construction, though my estimates generally would not 

be exactly zero due to sampling variation. My objective in this appendix 

is to (a) determine the sampling distribution of my estimated lower 

bounds when the  null hypothesis holds, and (b) use this distribution to 

carry out classical hypothesis testing to assess whether the observed 

lower bound estimates are sufficiently far from zero to reject the null 

hypothesis. The theoretical discussion in Part 0 of this appendix is 

unavoidably both technical and somewhat lengthy. To keep it from 

being even longer, I have not tried to make this discussion accessible to 

those without advanced training in modern large-sample statistical 

theory; throughout, I assume readers’ familiarity with asymptotic 

statistics, vector calculus, and basic matrix algebra. Readers who are 

uncomfortable with these mathematical areas should skip directly to 

Part (3), where I present the  

z-statistics necessary for conducting statistical inference. 

A.  Deriving the Asymptotic Variance of NASLB 

Determining the sampling distribution of the statistic NASLB involves 

some non-standard aspects because the data I use come from two 

separate data-collection procedures: one for the rate at which 

defendants file Rule 12(b)(6) MTDs in cases that plaintiffs have filed, 

                                                           

1.  FED. R. CIV. P. 8(a). 
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and one for the rate at which defendants ultimately prevail on these 

motions. Because I do not have access to the underlying data, I cannot 

account for whatever dependence exists across these two collection 

procedures. I will simply assume that each MTD filing rate is 

independent of each defendant-prevails rate.  

To determine the null distribution of my estimated lower bound, I 

suppose that the data generating process involves two sets of 

independently drawn cases. The first set involves M cases drawn 

independently from a population distribution whose support consists of 

four mutually exclusive categories:  

1. a case is filed under the Conley regime and has a Rule 

12(b)(6) MTD filed; 

2. a case is filed under the Conley regime and does not have a 

Rule 12(b)(6) MTD filed; 

3. a case is filed under the Twombly/Iqbal regime and has a 

Rule 12(b)(6) MTD filed; 

4. a case is filed under the Twombly/Iqbal regime and does not 

have a Rule 12(b)(6) MTD filed. 

Given a randomly drawn case, define the random variable x to take 

on a value in the set {1,2,3,4}, with the particular value depending on 

which of the four events just described occurs.2 Define the probability 

that x=1 to be mc and the probability that x=3 to be mt; let the 

probabilities that x=2 and x=4 be pc and pt, respectively. Let M be the 

number of cases drawn from this process, and let X=(X1, X2, X3, X4) be 

the vector giving the total number of cases falling in each of the four 

categories (so that X1+X2+X3+X4=M). Assuming  the cases are draw 

independently, then X has a multinomial distribution with parameters 

(M, mc, pc, mt, pt). Under our null hypothesis, we have mc=mt=m and 

pc=pt=p. Since the four probabilities must sum to one, we then have 

2(m+p)=1, which implies that (m+p)=½. Since (m+p) is the probability 

that a case would fall in either pleading regime under the null 

                                                           

2.  Note that this approach allows the pleading regime itself to be randomly determined. An 

alternative approach would be to condition on the observed number of cases filed under each 

pleading regime, whether unadjusted or adjusted. The advantage of letting the numbers of 

cases filed in each regime be random is that it allows for the possibility that random chance, 

rather than party selection, explains why the number of MTDs actually filed under 

Twombly/Iqbal in the FJC’s filing dataset is greater than the number actually filed under 

Conley. 
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hypothesis, it follows that any multinomial distribution that satisfies the 

null hypothesis has equal expected numbers of cases drawn from each 

pleading regime. In addition, since the null hypothesis implies that 

mc=mt, the same share of cases will have MTDs filed under each 

pleading regime when the null holds. Thus, the null is consistent with 

the absence of all types of party selection (i.e., the absence not only of 

plaintiff and settlement selection, but also of defendant selection).  

The second part of the data generating process concerns cases in 

the FJC’s grants data set. I assume that the N cases in this data set are 

generated independently from a population distribution whose support 

consists of the following four mutually exclusive categories:  

1. a case with a Rule 12(b)(6) MTD adjudicated in one of the 

FJC’s study periods is adjudicated under the Conley study 

period and has its defendant ultimately prevail; 

2. a case with a Rule 12(b)(6) MTD adjudicated in one of the 

FJC’s study periods is adjudicated under the Conley study 

period and has its plaintiff ultimately prevail; 

3. a case with a Rule 12(b)(6) MTD adjudicated in one of the 

FJC’s study periods is adjudicated under the Twombly/Iqbal 

study period and has its defendant ultimately prevail; 

4. a case with a Rule 12(b)(6) MTD adjudicated in one of the 

FJC’s study periods is adjudicated under the Twombly/Iqbal 

study period and has its plaintiff ultimately prevail. 

Given a randomly drawn case, define the random variable y to take 

on a value in the set {1,2,3,4} depending on which of the four events 

just described occurs. Define the probability that y=1 to be hc and the 

probability that y=3 to be ht; let the probabilities that y=2 and y=4 be qc 

and qt, respectively. Let Y=(Y1, Y2, Y3, Y4) be the vector giving the total 

number of cases falling in each of the four categories. Assuming  the 

cases are drawn independently, then Y has a multinomial distribution 

with parameters (N, hc, qc, ht, qt). Under our null hypothesis, we have 

hc=ht=h and qc=qt=q. Since the four probabilities must sum to one, we 

have 2(h+q)=1, which implies that (h+q)=½. Since (h+q) is the 

probability that a case in the FJC’s grants data set would be 

adjudicated in either the Conley or the Twombly/Iqbal pleading regime 

under the null hypothesis, it again follows that any multinomial 

distribution that satisfies the null hypothesis has equal expected 

numbers of cases drawn from each pleading regime. In addition, since 

the null hypothesis implies hc=ht, the same share of cases will have 
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defendants ultimately prevail under each pleading regime when the null 

holds. This shows that the null hypothesis again is consistent with the 

absence of all types of party selection, as well as with the absence of 

any difference in judicial behavior. 

I now show that NASLB has probability limit zero under the null 

hypothesis. Recall from footnote 157 of the main text that my lower 

bound can be written as 

             
    

    
, 

where     is the share of defendants who ultimately prevail among cases 

that are filed under the Twombly/Iqbal pleading regime,     is the same 

share among those filed under the Conley pleading regime, MTDc is the 

number of MTDs filed under the Conley regime, and MTDt is the 

number of MTDs filed under the Twombly/Iqbal regime.3 By definition, 

we have    =Y3/(Y3+Y4) and    =Y1/(Y1+Y2). Dividing each numerator and 

each denominator by N yields                   and                  , where 

hats denote sample frequencies corresponding to population 

probabilities. Dividing both the numerator and the denominator of the 

ratio (MTDc /MTDt) by M shows that this ratio can be written as          , 

since MTDc=X1 and MTDt=X3, where          is the share of all cases 

in the filing data set that are filed under Conley and have MTDs filed, 

and analogously for    .  

 Putting all of this together implies that I can write my lower bound 

as  

 

       
   

       
 

   

       
 
   

   
 .  (B.1) 

Every component of the right hand side of this equation is a sample 

frequency, and sample frequencies are consistent for their 

corresponding population probabilities. Therefore, each sample 

frequency converges in probability to its corresponding population 

probability, i.e., plim       , plim       , plim       , plim       , plim 

                                                           

3.  The main text actually uses the subscripts “TI" and “Conley”, but in this Appendix I 

use “t” and “c” for short. In addition, the main text uses g, rather than   , to refer to 
the share of cases in which defendants prevail. In this appendix I use the “hats” to 

emphasize that the quantities involved are estimates rather than population 
parameters. In addition, I  
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      , and plim       . By the Slutsky theorem, the probability limit of 

a continuous function of random variables is the continuous function of 

the probability limits of the random variables.4 Therefore, the probability 

limit of NASLB is [ht/(ht+qt) – hc/(hc+qc)×(mc/mc)]. Recall that under the 

null hypothesis, hc=ht=h, qc=qt=q, and mc=mt=m. It thus follows that the 

probability limit of NASLB is [h/(h+q) – h/(h+q)×(m/m)]= [h/(h+q) – 

h/(h+q)], which is zero, as I claimed above. 

Next, I use the delta method to show that NASLB has an 

asymptotically normal distribution.5 Since                     by 

construction, we can re-write NASLB as  

       
   

           
 

   

       
 
   

   
 . (B.2) 

Let  =(mc, mt, hc, ht, qc)', and let                         ' be its sample 

analog. It will be useful to distinguish between the parts of   and    that 

involve parameters from the filing and grants datasets. Thus, I define -

 g=(hc, ht, qc)',                   ,  m= (mc,mt)', and              ', so that 

      ,       and         ,       . Below I will work with         , 
which is complicated slightly by the fact that the relevant sample size 

for the filing dataset is M, rather than N. Observe that            
                 . I will assume that            =   exists; that 

is, I assume that as the number of grants-dataset cases grows large, 

the ratio of this number to the number of filings-dataset cases 

converges to some finite constant,  . By the product rule,6        
   . has the same large-N behavior as              . Therefore, 

         has the same large-sample behavior as          
              

 
 
 

, which will be straightforward to work with. 

We can write the parameter NASLB as a function f     that maps from 

the vector of sample parameters,   , into the set of real numbers, i.e.,  

 

       
   

           
 

   

       
 
   

   
 . (B.3) 

                                                           

4.  See WILLIAM H. GREENE, ECONOMETRIC ANALYSIS, SIXTH EDITION, 1045 (2008) 

(Theorem D.12). 

5.  See Greene, Econometric Analysis, supra note 3, at 1055-1056 (Theorems D.21 

and D.21A). 

6.  See Id., at 1049 (Theorem D.16, relation (D-13)). 
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Note that the probability limit of NASLB is f( )=[ht/(ht+qt) – 

hc/(hc+qc)×(mc/mc)], which we saw via the application of the Slutsky 

theorem above. It is clear by inspection that the function f is both 

continuous and twice-differentiable in the vector  , provided that none 

of the denominators in (B.3) is identically zero. Therefore, we can use 

Taylor’s theorem to obtain the following representation of NASLB: 

 

                       
 
        (B.4) 

where    lies on the hyperplane between   and   . Subtracting f( ) from 

both sides of this equation and multiplying by the square root of N, the 

grants data set sample size, then yields 

 

                                 (B.5) 

Again using the product rule, we see that the right hand side of (B.5) 

has the same large-sample behavior as                      
 
 . Because 

   is consistent for  , and because    lies on the hyperplane between    

and  ,    must also be consistent for  . Therefore,          . Again 

applying the Slutsky Theorem, we have                        , so 

                 . Therefore, the right hand side of (B.5) has the 

same large-sample behavior as               , whose large-sample 

behavior is the same as              
 
                 , in light 

of the discussion supra concerning         
 
. The vectors     and     

involve only sample proportions, which are sample means, so we can 

apply a central limit theorem to obtain the result that both           
  

and            are asymptotically normal. Thus, as N grows, the 

distribution of              
 
                  converges to a 

normal distribution with mean vector zero and variance matrix equal to  

 

       
    
   

      , (B.6) 

where    is the variance matrix for           
  and    is the variance 

matrix for           . The zero sub-matrices allow us to re-write (B.6) 

as 

 
   

        
       (B.7) 
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where    is the 2-by-1 column vector of partial derivatives of the 

function f with respect to mc and mt and    is the 3-by-1 column vector 

of partial derivatives of the function f with respect to the elements of the 

vector   . 

Recall that              ', and that the     and     parameters are 

the fraction of filing-dataset cases that have Rule 12(b)(6) MTDs filed 

under the Conley and Iqbal regimes, respectively. Thus,        
           and                  , with Cov          
       . Note that the M in each denominator is eliminated when we 

work with           . In addition, under the null hypothesis we have 

mc=mt=m. Therefore, under the null hypothesis, the matrix     is given 

by 

 

    
         

         
 . (B.8) 

Differentiating (B.3) partially and evaluating at the true population 

parameters shows that the partial derivatives of the function f with 

respect to mc and mt are  
  

   
  

  

  
  and  

  

   
 

    

  
 , 

 

and imposing the null hypothesis’s requirement that gc=gt=g and 

mc=mt=m, we have 

 
  

   
  

 

 
  and  

  

   
 

 

 
,  

 

so 

   
  

 
        

 

under the null hypothesis. Therefore, under the null hypothesis the first 

part of (B.7) equals7  

 

                                                           

7.  To reach the second equality, I note that using the basic algebra of matrix 

multiplication,  

         
  
  

                . 
 

When we multiply this result by         , the result is          , as stated in (B.9). 
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 (B.9) 

Because each element of    involves a proportion, the analysis for 

   is similar to that for   . After imposing the null hypothesis, the 

covariance matrix of            can be shown to equal 

 

    

            

            
              

 . (B.10) 

Differentiating (B.3) partially and again evaluating at the true 

population parameters yields  

 

 

  

   
 

  

           
  

  

       
   

 
  

  
           

  

   
 

 

         
     

 
  

   
 

  

           
  

   

       
   

 
  

  
       

  (B.11) 

where the notation “   ” indicates that an equality holds under the null 

hypothesis, though not generally otherwise.8 Thus, 

                  under the null.  

Unlike       
     , which we have seen equals          under 

the null hypothesis, the term  
     

      (B.12) 

does not generally simplify neatly. Therefore, I simply observe that 

under the null hypothesis, the limiting variance of               , which 

we have seen is also the limiting variance of          , is  

 

   
   

                     
   

             
    

 
     (B.13) 

                                                           

8.  Recall that under the null hypothesis, we have mc=mt=m, hc=ht=h, and h+q=½.  
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To estimate the variance of NASLB involves three further (entirely 

conventional) steps in the argument. First, I assume that N is large 

enough so that the actual variance of           given a finite sample 

size N is well approximated by the limit that appears in (B.13). Second, 

observe that the variance of the product of (i) a non-stochastic scalar 

and (ii) a random variable equals the product of (iii) the square of the 

scalar and (iv) the variance of the random variable. Under the just-

made assumption that the formula in (B.13) is an acceptable 

approximation to              for finite N, then, we can approximate 

         using  

 

             
    

 
   

     
   (B.14) 

Third and finally, I replace the population parameters in this 

formula— , g, h, and q—with consistent estimates. This final step is 

appropriate, for large N, because of the Slutsky theorem. Thus when 

we replace population parameters in the right hand side of (B.13) with 

consistent estimators, the result is a consistent estimator of the limiting 

variance of          . It then follows that when we replace the 

population parameters on the right hand side of (B.14) with consistent 

estimators, the resulting formula will be a good estimator for         . 
Thus, the actual estimator I use for the variance of NASLB is: 

       
      

  
    

 
         (B.15) 

where                       and     is the matrix that results 

from replacing h and q with    and    in (B.10). The estimated standard 

error that I use for NASLB,   , is then the square root of (B.15). 

 

B. Estimating the Parameters  , m, h, and q 

Next I discuss the estimators I use for  , m, h, q, and g. Recall that   

is the limit value of the ratio of N to M. The obvious estimator for this 

limit is the ratio of actual N to actual M, so I use          to estimate 

 . The bold rows in Appendix A Table 1 report the number of cases in 

the 2005/2006 and 2009/2010 time periods in each of the three case 

categories I consider. For example, there are 3795 employment 



 
 
the yale law journal  121:2270  2012 

10 

 

discrimination cases in the earlier period and 3871 in the later period, 

yielding a total of N=7666 such cases. I report this value and the values 

for the total other cases and civil rights cases categories in the first row 

of Appendix B Table 1. Turning to M, the second row of Appendix B 

Table 1 reports the total numbers of cases from the FJC’s grants data 

set for each of my three case categories. The value of M is the sum of 

the value in Appendix A Table 4’s “Total” column for 2006 and the value 

in the corresponding column for 2010. For example, there are a total of 

92 employment discrimination cases in the grants data set’s 2006 

period and 113 such cases in its 2010 period, so M equals 205 for 

employment discrimination cases. The third row of Appendix B Table 1 

reports the estimated value of    for each case category; these values 

range from 0.013 to 0.048. 

Next consider m. Under the null hypothesis, m=mc=mt, where mc is 

the population probability that a case drawn for the filing data set will 

wind up (i) having an MTD filed (ii) under the Conley regime, and mt is 

the corresponding probability when we substitute Iqbal for Conley in (ii). 

Observe that the sum (mc+mt) is the population probability that a case 

drawn for the filing data set has an MTD filed under either pleading 

regime. Under the null hypothesis, this sum equals 2m. Therefore, m 

equals one-half the probability that a case drawn for the filing data set 

has an MTD filed under one pleading regime or the other. This quantity 

can be estimated consistently using one-half the share of all cases in 

the filing data set that have MTDs filed.  

I reported the number of MTDs filed by case category in the two 

columns of Appendix A Table 3, one for the 2005/2006 period and the 

other for the 2009/2010 period. Respectively, these columns 

correspond to the variables X1 and X3 I defined at the beginning of the 

current appendix. I report their sum in the fourth row of Appendix B 

Table 1, which shows that there are 611 MTDs filed in the employment 

discrimination category, 830 filed in my civil rights category, and 3209 

MTDs filed in the total other cases category. Appendix B Table 1’s fifth 

row then reports the corresponding estimates of m, which equal these 

X1+ X3 figures divided by twice the filing data set sample size. The 

resulting estimates of m are 0.040 for employment discrimination cases, 

0.057 for civil rights cases, and 0.020 for total other cases. 

Now I turn to estimating h, g, and q. Recall that hc is the population 

probability that a case drawn for the grants data set will have its motion 

to dismiss adjudicated under the Conley regime and granted, and ht is 
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the analogous probability for the Twombly/Iqbal regime. Observe that 

(hc + ht) is the population probability that a case drawn for the grants 

data set will have its MTD granted under one or the other of the 

pleading regimes. Since h=hc=ht under the null hypothesis, it follows 

that this population probability equals 2h under the null. Consequently, 

the sample fraction of MTDs that are granted is a consistent estimator 

for 2h, so I estimate h using              , where I defined Y1 and 

Y3 above as the numbers of MTDs actually granted under the Conley 

and Iqbal pleading regimes, respectively. In addition, recall that g is the 

population probability, under the null hypothesis, that an MTD will 

actually be granted, regardless of the pleading regime under which it is 

adjudicated. Thus, we have g=2h, and g can be estimated consistently 

using 2  . 

I reported the values of Y1 and Y3 in the second and fifth columns, 

respectively, of Appendix A Table 4. I report the sum of these figures in 

the sixth row of Appendix B Table 1. This row shows that defendants 

prevailed in a total of 125 of the MTDs in the grants data set for 

employment discrimination cases, 224 of the civil rights cases’ MTDs, 

and 560 of the total other cases’ MTDs. The seventh row of Appendix B 

Table 1 then reports the ratio of each category’s number of MTDs 

granted to the number of MTDs adjudicated in the grants data set for 

that category, i.e., M from the second row. These ratios are 0.610 for 

employment discrimination cases, 0.646 for civil rights cases, and 0.558 

for total other cases.9 The eighth row of Appendix B Table 1 reports the 

estimated value of h, which is just half the estimate for g: 0.305 for 

employment discrimination cases, 0.323 for civil rights cases, and 0.279 

for total other case. Finally, to estimate q, recall that under the null 

hypothesis, (h+q)=½. Therefore, a consistent estimate of q may be 

calculated as    
 

 
   . I report these estimates in the final row of 

Appendix B Table 1. 

                                                           

9.  For each category, notice that the estimate of g lies between the share of 
defendants who prevailed in the FJC’s Conley and Iqbal periods (reported, e.g., in 

Table 4 of the main text). This regularity occurs because the estimates of g can be 
shown to equal weighted averages of the two defendant-prevails rates. The same 

relationship holds if we compare twice the estimate of m to the MTD filing rates 
reported in Table 3 of the main text, since     is a weighted average of these MTD 

filing rates. In each case, the weight applied to each Conley rate is the share of 
observations that fall in the Conley period, and analogously for the Iqbal rates. 
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C. Estimated Standard Errors for the Estimated Lower Bounds 

The first row of Appendix B Table 2 reports my estimates of     , the 

part of the variance in           that is due to variation in MTD filings, 

for each of the three case categories I consider. These estimates are 

0.502 for employment discrimination cases,  0.703 for civil rights cases, 

and 0.405 for total other cases. The second row reports the estimates 

of    , the part of the variance in my estimated lower bound that is due to 

variation in the rate at which defendants prevail in MTDs that appear in 

the grants data set. These estimates are quite similar across case 

category: 0.952 for employment discrimination cases, 0.915 for civil 

rights cases, and 0.987 for total other cases. The table’s third row 

reports the sum           , which is my estimate of the limiting total 

variance,             . These estimates also are relatively similar: 

1.454 for employment discrimination cases, 1.618 for civil rights cases, 

and 1.392 for total other cases.  

The table’s fourth row reports the number of cases in the grants 

data set, N, for each case category, repeated from Appendix B Table 1; 

there are 205 employment discrimination cases, 347 civil rights cases, 

and 1003 total other cases. The fifth row then reports the ratio of    to N, 

which is my estimate of the asymptotic variance of NASLB. These 

estimates are 0.0071 for employment discrimination cases, 0.0047 for 

civil rights cases, and 0.0014 for total other cases. The substantial 

relative differences in these estimated variances arise because      

depends directly, and negatively, on the number of cases in the grants 

data set; there are nearly 70% more employment discrimination cases 

than civil rights cases, and there are nearly three times as many total 

other cases as employment discrimination cases.  

The sixth row of Appendix B Table 2 reports my estimates of  

        , the estimated standard error of NASLB under the null 

hypothesis that Twombly and Iqbal changed nothing about pleading, 

including party behavior. These estimated standard errors are 0.084 for 

employment discrimination cases, 0.069 for civil rights cases, and 0.037 

for total other cases. The table’s seventh row reports the negatively 

affected share estimates (these are repeated from Table 6 of the main 

text), which are 0.154 for employment discrimination cases, 0.181 for 

civil rights cases, and 0.215 for total other cases.  

Dividing the negatively affected share estimates by their estimated 

standard errors yields the conventional z-statistic. These statistics are 
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1.833 for employment discrimination cases, 2.263 for civil rights cases, 

and 5.811 for total other cases. Under the null hypothesis, this statistic 

should have an approximately standard normal distribution. Therefore, 

formal hypothesis testing can be based on whether these statistics are 

unusually far from zero, where the metric for “unusual” is given by the 

quantiles of the standard normal distribution.  

The final row of Appendix B Table 2 reports one-sided p-values 

based on these z statistics, for testing the null hypothesis of no change 

in pleading against the alternative hypothesis of pleading changes 

consistent with the economic model of pleading I discuss in the main 

text.10 These p-values are 0.033 for employment discrimination cases, 

0.004 for civil rights cases, and zero to four digits for total other cases. 

Thus, all three of the negatively affected share estimates are 

statistically significant at conventional levels.11 
 

  

                                                           

10.  I use one-sided p-values rather than two-sided because the negatively affected 
share can never be negative. Therefore, the relevant alternative hypothesis 

concerns not the possibility that NASLB≠0, but rather that NASLB>0. As such, the 
appropriate p-value is found by determining the probability that a random draw from 

the standard normal distribution would exceed the reported z statistic (rather than 
the probability that the absolute value of such a random draw would exceed the 

reported z statistic, as with a two-sided p-value). 

11.  One might worry about multiple comparisons here. Since there are three separate 

z-statistics here, the probability that at least one of them exceeds the traditional 
critical value for a given significance level is greater than that significance level. 

Equivalently, the probability of observing at least one traditional (i.e., marginal) p-
value less than or equal to a given significance level is greater than that 

significance level. Thus, if my greatest z statistic were, say, 1.833, then it would be 
inappropriate to conclude that any of the NASLB estimates were significant. But 

since the least z statistic has that value, there is little question that these estimates 
are significant. 
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Appendix B, Table 1.  

estimates of parameters used in estimating vm and vg 

 

 employment 
discrimination 

civil 
rights 

total 
other 

M 7666 7242 79,200 

N 205 347 1003 

   
 

 
 0.027 0.048 0.013 

Number of MTDs Filed: X1+ X3 611 830 3209 

   
     

  
 0.040 0.057 0.020 

Number of Defendants 
Prevailing: Y1+Y3 

125 224 560 

   
     

 
 0.610 0.646 0.558 

   
  

 
 0.305 0.323 0.279 

   
 

 
    0.195 0.177 0.221 
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Appendix B, Table 2.  

variance estimates and z-ratios for the estimated lower bound 

 

 employment 
discrimination 

civil 
rights 

total 
other 

     
      

  
 0.502 0.703 0.405 

        
        0.952 0.915 0.987 

            1.454 1.618 1.392 

N 205 347 1003 

 
 

 
   0.0071 0.0047 0.0014 

      

 

 
 0.084 0.069 0.037 

       0.154 0.181 0.215 

    
     

  
 1.833 2.623 5.811 

One-sided p-value 0.033 0.004 0.000 

 


